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ABSTRACT 
Thermal stress problems are analysed using two coupled boundary element codes. The first code computes 
the temperature and heat flux distributions whereas the second one uses these results to calculate the 
displacements and stresses at any point. In both codes, the multiple reciprocity method is used in order 
to avoid the domain discretization due to the 'body force' terms. Examples with different geometry and 
different heat sources are presented to check the accuracy of the formulations. 
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INTRODUCTION 

The advent of supersonic aircraft and missiles and the design of nuclear reactors have introduced 
into engineering the problem of finding thermoelastic stresses. Previously, some analytical 
solutions were available but only for simple geometries1−3 

In this paper, two dimensional thermal stress problems in any geometry are solved using the 
boundary element method (BEM). Because of the complex geometry and/or boundary 
conditions in the thermal part of the analysis, the analytical expression for the temperature field 
is not available and has to be calculated numerically. Once the temperature and its normal 
derivatives (heat fluxes) have been found at any point, a second analysis is carried out to 
determine displacements and stresses at the same points. 

The temperature distribution depends not only on boundary conditions but also on certain 
heat sources acting within the body. Because of the heat sources, the application of boundary 
element method leads to an integral equation which contains domain integrals. Although these 
integrals do not introduce any unknowns, they detract from the elegance of the formulation 
and affect the efficiency of the method because integrations over the whole volume are required. 
In order to avoid the discretization of the domain into cells4, the multiple reciprocity method 
(MRM) is used. The method generates a series of boundary integrals after applying the reciprocity 
theorem in recurrence manner which increases the order of the fundamental solution. It was 
originally developed by Nowak and Brebbia to solve Poisson5 and Helmholtz equations6 and 
has been extended by Neves and Brebbia to elasticity with gravitational and centrifugal loadings7 

as well as to thermoelasticity with certain types of heat sources8 utilizing, however, only known 
analytical expressions for temperature fields. As a consequence relatively simple geometries have 
been studied. The method has also been successfully applied in other engineering problems. 
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Recently, Itagaki used it to solve one-group fission neutron problems9; Power and Power applied 
it to solve Ossen's system of equations10; and Kamiya and Andoh use the MRM in the analysis 
of Helmholtz eigenvalues11. 

The purpose of this paper is to show how the MRM can be applied to solve coupled 
thermoelasticity problems. It is assumed, however, that problems under consideration are linear 
in a sense that physical properties do not depend on solutions. Up-to-now the MRM has not 
been applied to solve the non-linear cases and these problems are subject of separate research. 
Some of the most important features as well as noticed drawbacks are pointed out. Numerical 
examples from the field of nuclear engineering demonstrate the accuracy of the MRM. Different 
heat sources and geometries are analysed and results are compared with analytical solutions 
and/or with another BEM approach based on integration over the domain. 

ANALYSIS OF THE PROBLEM 

Considering a steady-state temperature distribution, the heat conduction problem is governed 
by the Poisson equation given by : 

λÑ2T + b = 0 (1) 
where λ is the thermal conductivity; T is the temperature distribution; b is the heat source 
density which depends on position only. 

After applying Green's second theorem, one obtains the following integral equations for each 
boundary node i: 

in which the heat flux is defined as: 

The fundamental solution T* and the heat flux analog q* depend on geometrical distance r 
and have the usual meaning: 

The second part of the analysis is governed by the Navier equation and the resulting integral 
equations that describe displacements at any point and stresses at internal points8 are given 
respectively by: 

where Cij is the free coefficient; uj is the displacement at any point in the j direction; pj is the 
traction in the j direction; σij is the stress tensor at internal point; α is the coefficient of linear 
thermal expansion; δij is the Kronecker delta; v is the Poisson's ratio; μ is the shear modulus. 
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The fundamental solutions of (6) and (7) are given by: 

Equations (6) and (7) can only be solved when the temperature field resulting from (2) is 
known. 

Note that the integral equations (2), (6) and (7) contain domain integrals. In order to avoid 
domain discretization, the multiple reciprocity method is used. 

Consider first the domain integral of (2) with the upper index (0) included to indicate that 
this is the original expression. The application of MRM leads to a series of boundary integrals 
given by5: 

where higher order fundamental solutions and the Laplacians of source function satisfy the 
following group of equations: 

The higher order fundamental solutions resulting from (15) and (16) are given by: 
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where coefficients α and β can be obtained from: 

with initial values α(0) = 1 and β(0) = 0. 
The same procedure is applied to the domain integrals in (6) and (7) using the following 

recurrence formulae: 

Since source function b(0) is a known function, the Laplacians in (17), and (25) can be obtained 
analytically. 

Using the formulae (23) to (25) and the reciprocity theorem, one obtains8: 

where T(0) indicates the temperature itself which has to be determined by first code. 
The higher order fundamental solutions in (26) and (27) are given by: 

where coefficients satisfy recurrence relationships: 
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In this case, initial values for L = 0 are A(1) = 1/2, B(1) = 0, C(1) = 1, D(1) = 0, E(1) = 0 and 
F(1) = − 1; and for L = 1, F(2) = 0. 

MAIN FEATURES OF THE MULTIPLE RECIPROCITY METHOD 

The MRM transforms domain integrals occurring in thermoelasticity problems into a series of 
boundary integrals. Obtained representations are exact forms of primary integrals since 
simplifications are introduced only in the stage of discretization. The MRM does not require 
any internal points but it does require some analytical work. This refers to the generation of 
subsequent Laplacians b(L) and w(L) of the source function. 

Numerical implementation of the MRM is fairly simple and straightforward. It is important 
to note that the interchange of the summation and integration signs in (14), (26) and (27) 
avoids the storage of the high order fundamental solution matrices and allows to integrate 
directly over the boundary only once reducing the computational effort. To integrate directly, 
it is necessary to calculate the source term at each integration point over the 
element producing much more accurate results. 

It is also important to point out that in many practical situations the series in (14), (26) and 
(27) become finite summations. Then accuracy of the MRM depends only on the boundary 
discretization. If source function b(0) generates an infinite series a careful analysis of convergence 
has to be carried out. 

Convergence of the series depends mainly on the maximum distance between collocation 
points. The smaller this distance is, the easier convergence can be reached. As an example of 
convergence analysis, two different heat generation functions are considered in this paper. 

Radial heat source 
Let's consider the case of a cylinder with the internal heat sources defined as b(0) = c/R where 

c is a constant and R is the geometrical radial distance of the field point. This function produces 
the following series of Laplacians of temperature and their normal derivatives: 
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where 

and K(1) = 1. 
For this case, convergence analysis (details of which are given in Appendix A) indicates that 

the series converges only if the condition rmax/R < 1 is satisfied where rmax is the maximum 
distance from the source point to the field point. 

Exponential heat source 
The algorithm to calculate the Laplacians of temperature and the respective normal derivatives 

for the source function b(0) = c exp(aR) is presented in Appendix B. 
For that case, it was found that: 

● for small values of the constant a all series converge rapidly; 
● for large values of the exponent a, more boundary elements are necessary since the difference 

of T(L) between the outer and inner faces becomes stronger; 
● the condition rmax/R < 1 has to be satisfied. 

If the above conditions are not satisfied, it is necessary to divide the domain into sub-regions 
until the convergence criterion is fulfilled. It is also important to take into account the appropriate 
number of terms in the series. For more details regarding estimation of remainder series as well 
as other convergence problems the reader is referred to Reference 12. 

NUMERICAL EXAMPLES 

Hollow cylinders have often been used in the construction of nuclear reactors. In the walls of 
these structures, the heat is generated due to the attenuation of gamma rays and neutrons from 
the reactor core. In the following examples, cylinders of different geometries with different heat 
sources are analysed. The analysis consists of two uncoupled parts: the first one computes the 
temperature and heat flux distributions at any point while the second part calculates the 
displacements and stresses at those points. In both parts, the multiple reciprocity method is 
used and the results of the second part are compared with analytical solutions and/or with 
another BEM approach based on cells discretization. While the latest requires from the first 
analysis the temperature distribution over all the domain, the MRM approach needs only the 
temperature and its normal derivatives on the boundary. For all the examples, the material 
properties of the cylindrical carbon-steel pressure vessel are given by : 

Thermal conductivity λ = 43.27 W/mK 
Young's modulus E = 207 × 103 MPa 
Poisson ratio v = 0.3 
Thermal expansion α = 1.1 × 10−5 K− 1 

Example 1—Hollow cylinder subject to a radial heat source 
Let's consider first a simple geometry in order to compare the numerical results obtained by 

MRM and cells integration with the analytical solution1. 
The condition rmax/R < 1 is satisfied if a section of 45° is analysed. Domain under consideration 

and boundary conditions are shown in Figure 1. While in the MRM approach only 50 linear 
boundary elements are used, the cells approach also needs 200 triangular cells to discretize the 
domain. 

The heat generation rate is given by b(0) = 104/R. 
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Table 1 Radial displacements and stresses 

Radial displacement (cm) 

R (m) 

1.5240 
1.5850 
1.6459 
1.7069 
1.7678 
1.8288 

MRM 

0.59717 
0.62469 
0.65034 
0.67420 
0.69629 
0.71671 

Cells 

0.59711 
0.62464 
0.65027 
0.67413 
0.69622 
0.71664 

Analyt. 

0.59752 
0.62504 
0.65068 
0.67452 
0.69662 
0.71703 

σzz (MPa) 

MRM 

−744.44 
−697.77 
−651.25 
−604.77 
−558.22 
−511.84 

Cells 

−744.45 
−697.77 
−651.27 
−604.75 
−558.23 
−511.86 

Analyt. 

−744.04 
−697.52 
−651.03 
−604.56 
−558.11 
−511.68 

The series converge with 6 terms and the results for the radial displacements and the stresses 
σzz are given in Table 1. 

Example 2—Hollow cylinder subject to an exponential heat source 
In this example, the same cylinder is subjected to an exponential variation of the heat source 

given by b(0) = 75.08 × 1014 exp( −17.5R). Due to the extremely rapid variation of the heat 
source function in the radial direction, it is necessary to increase the number of boundary 
elements to obtain good results. The selected angle of the section is 5.625°. Boundary conditions 
are displayed in Figure 2. 

The results for the radial displacements and the stresses σzz using 8 terms in the series are 
given in Table 2. 

Example 3—Multi-bore cylinder with radial heat source 
Consider the case of a multi-bore cylinder2 with 12 spaced circular holes with internal heat 

generation b(0) = 2 × 105/R. 
The problem is analysed using the MRM approach with 70 boundary elements and another 

BEM approach that requires 280 internal cells. Discretization as well as boundary conditions 
are shown in Figure 3. 
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Table 2 Radial displacements and stresses 

R (m) 
1.5240 
1.5850 
1.6459 
1.7069 
1.7678 
1.8288 

MRM 

0.42187 
0.45009 
0.47226 
0.48878 
0.50003 
0.50637 

Displacement (cm) 

Analyt. 

0.42225 
0.45046 
0.47261 
0.48913 
0.50031 
0.50670 

σzz (MPa) 

MRM 

−819.51 
−667.74 
−519.68 
−376.37 
−237.80 
−103.80 

Analyt. 

−819.31 
−667.42 
−519.37 
−376.07 
−237.56 
−103.68 
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The resulting equivalent Von Mises stresses for both approaches are plotted in Figure 4 and 
the difference was less than 1%. In this case all the series converge within 8 terms. 

Example 4—Multi-bore cylinder with exponential heat source 
Consider the same cylinder of the previous example but subjected to an exponential heat 

source b(0) = 75.08 × 105 exp(−4∙R). Because the variation of the heat source is relatively 
smooth, the series converges quickly with only 8 terms. 

The resulting equivalent Von Mises stresses obtained using MRM are compared with cells 
integration (Figure 5). 

CONCLUSIONS 

The paper presents the application of the multiple reciprocity method for solving linear 
thermoelasticity problems. The technique generalizes the concept of the so-called Galerkin vector 
and expresses solution in terms of boundary integrals only. Two independent computer codes 
are used. While the first code calculates the temperature and heat flux distribution along the 
boundary, the second one determines displacements and internal stresses. 

The results of numerical tests demonstrated excellent accuracy of the MRM. It should, however, 
be stressed that for the very rapid variation in the heat source functions and consequently rapid 
variation in the temperature fields, the method requires a more refined boundary discretization 
and a larger number of terms in the series. 

Generation of higher order Laplacians of the heat source function requires some analytical 
preparation. The usage of the widely available software like Derive or Mathematica, which is 
generally capable of automating the above process, is highly recommended. The numerical tests 
carried out so far showed the good efficiency of the MRM. 

The reader's attention is also called to a convergence analysis. 
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APPENDIX A 

Convergence of the series 
Consider the heat generation b(0) = c/R and (28), (32), (33), (39) and (40). The series in 

(26) converges if for L » 0: 

Consequently: 
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APPENDIX B 

Algorithm to compute the value of T(L) and ∂T(L)/∂R for the case of exponential heat source 
b = c exp (aR) 


